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1. Introduction

Graphene, a single atomic sheet of graphite, has been a target 
of intensive studies because of the novel properties arising 
from the notable two-dimensional (2D) and massless nature 
of carriers therein [1–3]. The effects of quantum interference 
in 2D electron systems, such as weak localization (WL) and 
weak antilocalization (WAL), have been intensively studied 
because they provide rich information on the electronic trans-
port property [4, 5]. In particular, exfoliated monolayer and 
bilayer graphene and monolayer graphene grown on SiC 
substrate have been used as a platform for observing such 
various novel phenomena [6–13]. Previous studies clarified a 

substantial contribution from the electron–electron interaction 
and WL to the resistivity and its sub-micrometer coherence 
lengths. The transport property of bilayer graphene grown on 
SiC substrate, however, has not been sufficiently investigated 
whereas it is abundant in novel phenomena such as 2D super-
conductivity [14, 15].

Graphite intercalation compounds (GICs) show various 
novel properties such as superconductivity and magnetism. 
GICs are widely used for technological application like 
an electrode of Li-ion battery and chemical catalysis [16]. 
Recently, graphene intercalation compounds, the thinnest 
limit of GICs, are attracting much attention as a platform 
for 2D superconductivity and electrochemical devices [14, 
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Abstract
We performed in-situ electrical transport measurements for bilayer graphene grown on 
SiC(0 0 0 1) substrate, Li-intercalated bilayer graphene, and after that desorbing Li atoms by 
heating. Bilayer graphene after desorbing intercalated Li atoms showed a higher resistivity and 
different behavior in magnetoconductance compared to pristine bilayer graphene. We observed 
the weak localization of carriers at low temperatures in all the three samples and analyzed 
the experimental results with the extended Hikami–Larkin–Nagaoka equation to investigate 
the transport properties. The result shows that the magnetoconductance of pristine bilayer 
graphene is described by the AB stacking structure model and the phase breaking scattering 
is dominated by the electron–electron scattering. The intra-valley scattering occurs most 
frequently probably due to dopants in SiC substrate. However, in Li-desorbed graphene, the 
magnetoconductance can be described by neither AB nor AA-stacking model, suggesting the 
coexistence of domains with several different stacking structures.
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15]. Li-intercalated graphene has been actively investigated 
in these days for application to Li-ion nano-battery [17, 18]. 
However, the basic process of Li intercalation and de-interca-
lation is still unclear, in particular, in the relation to the elec-
tronic transport property.

In this paper, we report an in situ electrical transport meas-
urement study of bilayer graphene grown on SiC substrate 
to investigate the change in the transport properties upon 
Li-intercalation and desorption (de-intercalation). We found 
that the temperature and magnetic-field dependences of the 
resistivity in bilayer graphene are well explained in terms of 
the WL effect. We observed that the conductivity was remark-
ably enhanced upon Li-intercalation, while it was drastically 
reduced upon desorption of Li to the value much lower than 
that of pristine bilayer graphene. The observed WL effect 
in Li-desorbed sample cannot be explained with the same 
model as used in pristine bilayer graphene, implying a signifi-
cant structural change during the Li-intercalation/desorption 
process.

2. Experimental

Figures 1(a)–(c) show RHEED patterns of pristine, 
Li-intercalated and Li-desorbed bilayer graphene, respec-
tively. Pristine bilayer graphene (called S1 hereafter) was pre-
pared on an n-type Si-rich 6H-SiC(0 0 0 1) substrate by direct 
heating up to 1550 °C under 1 atm argon atmosphere in an 
ultrahigh vacuum (UHV) chamber. By precisely controlling 
the heating temperature and the duration time, we succeeded 
in fabricating bilayer graphene [17]. The number of graphene 
sheets was confirmed by observing the band dispersions near 
K point in the Brillouin zone by angle-resolved photoemis-
sion spectroscopy (ARPES) [17]. After a short-time expo-
sure to air, the bilayer graphene sample was transferred to 
another UHV system equipped with a reflection high-energy 
electron diffraction (RHEED) apparatus, Li evaporator, and a 
resistance measurement system [19]. As seen in figure 1(a), 
after heating up to 500 °C under UHV to remove contami-
nants adsorbed on the surface, the RHEED pattern from S1 
clearly exhibited the graphene’s 1  ×  1 and the buffer layer’s 
(6  √3  ×  6  √3)R30° spots. Deposition of Li atoms was car-
ried out using a Li dispenser (SAES Getters) at room temper-
ature under UHV (3  ×  10−10 Torr). The resultant sample (S2) 
showed a RHEED pattern of (√3  ×  √3)R30° characteristic 
of Li-intercalated bilayer graphene (figure 1(d)) [14, 17] with 
no trace of (6  √3  ×  √3)R30° spots. The third sample (S3) was 
prepared by heating S2 sample at 900 °C in UHV to desorb the 
Li atoms until the (√3  ×  √3)R30° pattern disappeared and 
the (6  √3  ×  6  √3)R30° pattern from the buffer layer recov-
ered as shown in figure 1(c).

The transport measurements were performed by the in situ 
four-point probe (4PP) technique in a UHV system (Unisoku 
USM-1300S) without exposing the samples to air [19]. 
The 4PP consists of four copper wires of 100 μm in diam-
eter, aligned on a line with the probe spacing of ca. 200 μm. 
The sheet resistance Rs was obtained by the 4PP dc current–
voltage measurement by using the dual configuration method 

to avoid the data scattering due to the error in the probe 
spacing [19–22].

3. Results and discussion

Figure 2(a) shows the temperature dependence of conduc-
tance for S1–S3. The conductance of S2 (Li-intercalated one) 
is ~3 times higher than that of S1 (pristine), and it is remarked 
that S3 (Li-desorbed one) exhibits lower conductance than S1, 
although the RHEED pattern of S3 looks similar to that of S1. 
The increase in conductance from S1 to S2 is due to doping of 
electrons by intercalated Li atoms. As seen in figure 2(b), we 
performed the same experiment by using another sample, and 
then found a scattering in the conductance for S2 from sample 
to sample, while the conductance of S1 and S3 was well repro-
ducible. This scattering in conductance value in S2 may be due 
to difference in the amount of Li atoms intercalated in and/or 
adsorbed on graphene. However, the carrier density of S2 is at 
least ~16 times larger than that of S1 estimated from the band 
dispersion by ARPES [17]. According to the result of low-
energy electron microscopy (LEEM), Li-intercalation induces 
wrinkles/cracks and defects in graphene [23], which implies 
that the Li-intercalation process causes additional scattering 
centers for carriers.

We also found that the conductance of S3 is lower than that 
of S1. To reveal the origin of this difference, we compared the 
conductance of S1 with that of S1 after only heating at 900 °C 
without Li-intercalation/desorption. As a result, we found that 
there was little difference between the two samples (figure 
1(c)), suggesting that the process of Li-intercalation and des-
orption should play a major role to induce the irreversible 
change in the conductance from S1 to S3.

Figure 2(d) shows the temperature dependence of conduct-
ance of S1–S3. When lowering the temperature from 30 K, the 
conductivity of S1 at first shows a gradual increase till ~7 K 
and then rapidly decreases at low temperatures as seen in 
figure 2(d). This rapid decrease of conductance is a charac-
teristic behavior of localization. In the case of S2 and S3, on 
the other hand, a decrease of conductance appears to start at 
a higher temperature at around 30 K although the reduction 
speed is not so rapid as S1. This difference suggests that S2 and 
S3 have stronger localization than S1.

Now we discuss in details the conductivity of pristine 
bilayer graphene (S1) in relation to the WL and WAL effects 
[12, 13]. The WL occurs when an electron travels a closed 
path clockwise and anti-clockwise simultaneously to inter-
fere constructively with itself, while the WAL is a result of 
destructive interference of these two time-reversal processes 
[24–26]. Whereas the electron is scattered elastically many 
times during these processes, the phase coherence of wave 
function is preserved within a finite distance called the phase 
breaking length Lφ. Then, such phase coherence is broken 
by the inelastic scattering. As a result, the electron forms a 
standing wave around the closed path within Lφ, leading to 
the decrease (increase) of the electrical conductance due to 
the WL (WAL). In the case of graphene, WL and WAL can be 
better explained with three characteristic lengths: the phase 
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breaking length Lφ, the inter-valley scattering length Li, and 
the intra-valley scattering length L* as shown in figure 3(a). 
There are two kinds of well-defined stacking structures for 
bilayer graphene, which are called as AB stacking and AA 
stacking (figures 3(b) and (c)). Magnetic field dependence 
of conductivity in AB and AA stacking bilayer graphene is 
described by the extended Hikami–Larkin–Nagaoka (HLN) 
equation  as equation  (1) [9–11, 27, 28] and equation  (2), 
respectively; 

∆σAB = σ (B)− σ (0) =
e2

πh

[
F
(

B
Bφ

)

−F
(

B
Bφ + 2Bi

)
+ 2F

(
B

Bφ + Bi + B∗

)]
,

 

(1)

∆σAA = σ (B)− σ (0) =
2e2

πh

[
F
(

B
Bφ

)

−F
(

B
Bφ + 2Bi

)
− 2F

(
B

Bφ + Bi + B∗

)]
.

 

(2)

In both equations, the first and second terms describe 
the WL behavior and F (x) ≡ logx +Ψ

( 1
2 + 1

x

)
, where 

Ψ is a digamma function. Bφ, Bi, and B* are defined as 

Bφ, i,∗ ≡ �/ (4eDτφ, i,∗) = �/
(

4eL2
φ, i,∗

)
, where D is the dif-

fusion coefficient and τφ,i,* is the scattering time for the phase 

breaking scattering (τφ), the inter-valley scattering (τi), and 
the intra-valley scattering (τ*), respectively. The factor 2 on 
the right-hand side in equation (2) comes from double Dirac 
cones in AA stacking bilayer graphene [29, 30]. Equation (1) 
has factor 1 because AB stacking bilayer graphene possesses 
a parabolic band. Namely, the factor depends on the number 
of channels. The third term in both equations  (1) and (2) 
represents an opposite sign each other corresponding to the 
Berry phase. When the Berry phase is 2π for AB stacking 
bilayer graphene, the third term has a positive sign indicative 
of WL [9–11, 27, 28]. In bilayer graphene with AA stacking 
which has the linear band dispersion, the Berry phase is π, 
resulting in the negative sign in the third term related to WAL. 
Generally, the third term has much less contribution than the 
first and second terms in equations (1) and (2) because of the 
small intra-valley scattering length (L∗) [9].

Figure 3(d) shows the change in conductance ∆σ of S1 
upon applying the perpendicular magnetic field B. The con-
ductance increases with increasing the magnetic field at all 
temperatures (T  =  1–15 K). This B dependence is explained in 
terms of the time-reversal-symmetry breaking in WL, that is, 
the phase of electron is changed with increasing the magnetic 
field due to the Aharonov–Bohm effect, leading to breaking of 
the localization (constructive) interference. Black solid curves 
in figure 3(d) are the results of numerical fitting with equa-
tion (1). We find a good agreement, in particular, in the range 
of low magnetic field (below ~60 mT) between experiments 

Figure 1. RHEED patterns of (a) pristine bilayer graphene grown on SiC(0 0 0 1) (S1), (b) Li-intercalated bilayer graphene (S2), and (c) 
bilayer graphene heated at 900 °C after Li-intercalation to desorb Li atoms (S3). Pink, yellow and green arrows indicate the (1  ×  1) pattern 
of graphene, the (6  √3  ×  6  √3)R30° pattern of the buffer layer, and the (√3  ×  √3)R30° pattern of intercalated Li atoms, respectively. (d) 
Schematic view of atomic arrangement of Li-intercalated bilayer graphene in AA stacking. Green balls are Li atoms intercalated between 
graphene layers. Pink and green rhombuses are unit cells of graphene and Li intercalated graphene, respectively.
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and fittings, which suggests the valid applicability of AB 
stacking model to pristine bilayer graphene (S1). We have 
derived parameters Bφ, Bi, and B*, together with the corre-
sponding scattering times τφ, τi, and τ*, by fitting the curves, 
and summarize the results in table 1.

The temperature dependences of Lφ,i,* are plotted in 
figure 3(e). The Lφ depends on temperature T as Lφ ∝ T−P/2. 
When P is close to 1 (2), the phase breaking is caused by the 
electron–electron interaction (the electron–phonon interac-
tion) [31–33]. In S1, the Lφ was fitted with P  =  0.83, as seen in 
figure 3(e), indicating that the phase breaking is dominated by 
the electron–electron interaction in pristine bilayer graphene 
grown on SiC.

Figure 3(f) was derived by fitting curves in figure  3(d) 
using equation  (2) with the AA stacking form. The Lφ was 
fitted with P  =  0.46, which, however, is much smaller than 
the theoretical value (1 or 2). Thus, it is suggested that the AA 
stacking model is not suitable for pristine bilayer graphene 
(S1), consistent with the theoretical calculation result that the 
AB stacking structure is energetically stable than AA stacking 
for bilayer graphene [34].

S2 also shows the WL behavior as seen in the supplemen-
tary data (figure S1) (stacks.iop.org/JPhysCM/30/305701/
mmedia), but the change of magnetoconductance is too small 
to fit accurately by using equation  (1) or equation  (2). This 
may be due to the carrier doping by intercalated Li [17], and 
thus we have performed a fitting to S2 by the original HLN 

equation  to obtain only the Lφ. The fitting result shows that 
Lφ  =  170  ±  20 nm at 1 K, which is relatively smaller than the 
value of pristine bilayer graphene (Lφ  =  588  ±  106 nm). This 
difference suggests the increase of phase breaking scattering 
by Li-intercalation.

Figure 3(g) shows the change in conductance ∆σ of S3 
upon applying the surface-normal magnetic field B. The B 
dependence can be also interpreted as breaking of the locali-
zation (constructive) interference. On the other hand, the B 
range of increasing conductance is larger than that of S1 by at 
least one order of magnitude, meaning the increase in popula-
tion of scatterers. The B dependence of S3 was analyzed by 
equations (1) and (2). Each result is shown in figures 3(h) and 
(i), respectively. Theoretically, since the inter and intra-valley 
scatterings originate from the impurity/defect scattering, the 
Li,* should be temperature-independent. However, Li shows a 
non-negligible temperature dependence in both figures  3(h) 
and (i). Furthermore, the Lφ was fitted by Lφ ∝ T−P/2 as 
the solid curves in figures  3(h) and (i), and the obtained P 
values are 0.27 and 0.22, respectively. These values are too 
small compared with the theoretical one (1 or 2). All these 
results indicate that S3 cannot be described by either pure AB 
or AA stacking model. This implies that the Li-intercalation/
desorption process induces a change in the stacking structure 
from the AB stacking in pristine bilayer graphene to a mixed 
domains of different stacking structures including twisted 
stacking structure [35].

Figure 2. (a) Temperature dependences of conductance among S1, S2 and S3. (b) Comparison of conductance at 30 K in S1, S2 and S3 
states between two independent samples. A scattering in conductance value is seen in S2 state. (c) Comparison of temperature dependence 
of conductance between pristine (S1) and that after just heating up to 900 °C without Li intercalation. (d) Conductance of S1–S3 at low 
temperatures in an expanded scale.
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Next, we discuss the detail of transport properties in pris-
tine bilayer graphene on SiC(0 0 0 1) substrate. In table 1, we 
compare the present results derived by equation (1) with pre-
vious reports [12, 13]. τφ,i,* of graphene grown on SiC (two 
right columns) are smaller than those of exfoliated graphene 
(two left columns). Here, we discuss the relationship between 
the scattering time of carriers and its mechanism. First, we 
focus on τ* for the intra-valley scattering in which the scat-
tering occurs within each valley (figure 3(a)). In all cases in 
table 1, τ* is much smaller than τφ and τi, meaning that the 
intra-valley scattering occurs most frequently. This type of 
scattering with smaller changes in momentum can be induced 
by weaker scattering potentials compared with the inter-valley 
scattering. For the case of monolayer graphene grown on SiC, 
it is reported [13] that the intra-valley scattering can be induced 
by donors in the SiC substrate. Actually, the SiC wafer used 

as a substrate in our study has a high nitrogen dopant density 
of ~1  ×  1018–1  ×  1019 cm−3. The Thomas–Fermi screening 
length is estimated to be 0.25–0.37 nm by taking into account 
the carrier density of degenerate semiconductor substrate 
[36]. The dopant density on the surface and the average dis-
tance between the nearest dopants in our SiC was estimated 
to be ~3.7  ×  1010–2.5  ×  1011 cm−2 and 11–29 nm, respec-
tively. As shown in figure  3(e), the intra-valley scattering 
length L* (which is theoretically independent of temperature) 
is 10–64 nm, which is comparable to the distance between the 
dopants on the SiC surface. Therefore, as one of the possible 
explanations, we infer that the nitrogen dopants in SiC sub-
strate act as the main scatterers for the intra-valley scattering.

Then, let us discuss the inter-valley scattering time τi of 
(monolayer and bilayer) graphene grown on SiC. In our case, 
it is much smaller than that of exfoliated graphene [12]. This 

Figure 3. (a) Schematic view of inter- and intra-valley scattering paths on the Fermi surfaces in bilayer graphene. (b) and (c) AB and AA 
stacking sequence in bilayer graphene. (d) Magnetic field dependence of conductance at various temperatures for S1. Black solid lines are 
fitting curves with equation (1). (e) and (f) Temperature dependences of the scattering lengths in S1 which were derived by equations (1) 
and (2), respectively, i.e. the phase breaking scattering (Lφ), the inter-valley scattering (Li), and the intra-valley scattering (L*) in S1. Solid 
curve is a fitting with Lφ ∝ T−P/2. (g) Magnetic field dependences of conductance at various temperatures for S3. (h) and (i) Temperature 
dependences of the scattering lengths in S3 which were derived by equations (1) and (2), respectively.
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means that graphene grown on SiC has more defects than the 
exfoliated graphene. Such defects may produce strong poten-
tials enough to induce the inter-valley scattering [12].

On the other aspect about the intra-valley scattering and 
inter-valley scattering, we also need to consider the carrier 
density in each sample because scattering events are propor-
tional to the carrier density in accordance with Fermi’s golden 
rule [37]. In table 1, bilayer graphene on SiC naturally has the 
carrier doping due to the charge transfer from the buffer layer, 
which is larger than that of the exfoliated graphene. This rela-
tion can explain that the intra and inter-valley scattering times 
of bilayer graphene on SiC are smaller in table 1.

Finally, we comment on the stacking structure of S3 by 
comparing with ex situ measurements of transport of pristine 
bilayer graphene and Li-desorbed bilayer graphene under high 
magnetic field [38]. Our previous Shubnikov–de Haas (SdH) 
study has revealed that the Berry phase is nearly π indica-
tive of the AA stacking after desorbing intercalated Li atoms, 
while pristine bilayer graphene has nearly 2π-Berry phase. 
This is not fully consistent with the present study in which the 
W(A)L analysis shows that the Berry phase of Li-desorbed 
bilayer graphene is neither π nor 2π, suggesting a mixture of 
several different stacking structures of AB, AA, and twisted 
stacking structures [39]. The SdH oscillations are in general 
more contributed by domains having higher carrier mobility 
and lower carrier density, while the W(A)L phenomena show 
a averaged property of all domains. Such a difference should 
be considered when interpreting the experimental results with 
different methods. It would be necessary to clarify the micro-
scopic structure by future experiments.

4. Summary

We performed in situ electrical transport measurements 
for pristine bilayer graphene grown on SiC(0 0 0 1), 
Li-intercalated bilayer graphene, and that after desorbing the 
intercalated Li atoms. In all the three samples, we observed 
the increase of conductance at low temperatures upon 
applying the surface-normal magnetic field, which indicates 
the WL of carriers. By analyzing the data with the extended 
HLN equation, we have revealed the followings; (i) the mag-
netoconductance of pristine bilayer graphene is explained 
well by the AB stacking model, (ii) the phase breaking scat-
tering is dominantly caused by the electron–electron scat-
tering in a low temperature region (<15 K), (iii) dopants in 
the SiC substrate may cause a frequent intra-valley scattering 
in pristine bilayer graphene, and (iv) the Li-intercalation/

desorption process produces additional scatterers and modi-
fies the stacking structure. To investigate the irreversible 
structural change upon Li-treatments, further studies with 
a high spatial resolution such as scanning tunneling micro-
scope are desired.
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